Il lato oscuro del bosone di Higgs

Su Phys.org è comparsa una breve ma incisiva intervista a Daniela Bortoletto una ricercatrice dell’Università di Oxford che fa parte del team di ATLAS al CERN.

Dopo la conferma del bosone di Higgs, come sapete da circa due mesi LHC ha ripreso a funzionare ad energie da record: 13 TeV. Sappiamo che decade in due fermioni, e avevo fatto un primo punto della situazione intervistando il Prof. Guido Tonelli.

Ora è interessante sentire cosa ha da dire la Prof.ssa Daniela Bortoletto, in quanto le sfide che ci aspettano sono a dir poco emozionanti. Per prima cosa gli scienziati sperano di colmare i buchi del Modello Standard, visto che non è una teoria del tutto. Per lo meno, non lo è ancora.

LHC.svg

La catena degli acceleratori del CERN, organizzati in stadi successivi di accelerazione terminanti con l’iniezione in LHC.

Come è noto, pur avendo riunificato la forza elettromagnetica e quella nucleare debole (forza elettrodebole), il Modello Standard non è completo:

(i) non include la forza di gravità, che è l’interazione di più debole intensità;

(ii) non spiega lo spettro delle masse delle particelle;

(iii) contiene diversi parametri arbitrari;

(iv) non rende conto dell’asimmetria tra materia e antimateria nell’universo, fallisce nell’identificare le particelle fondamentali di materia oscura e nello spiegare l’energia oscura;

(v) non riunisce in un’unica teoria l’interazione nucleare forte e la forza elettrodebole, che la teoria della grande unificazione spiega con l’ipotesi che queste due forze a temperature elevate si equivalgono.

Ovviamente è la materia oscura l’argomento più “caldo”. “Grazie alle elevate energie di LHC speriamo proprio di ricreare in laboratorio la materia oscura”, dichiara la Bortoletto. “Se la materia oscura è la più leggera delle particelle previste da SUSY che potremmo scoprire, ci sono molte altre particelle SUSY che potremmo scoprire, poiché la supersimmetria prevede che ogni particella del Modello Standard abbia una sua controparte supersimmetrica”.

Galassie mancate piene di materia oscura

Una suggestiva immagine dell’ammasso della Chioma (Cortesia NASA/JPL-Caltech/GSFC/SDSS).

La supersimmetria (o SUSY, da SUper SYmmetry) è stata formulata per rendere conto dei fenomeni della fisica delle particelle che rimangono inspiegati nell’ambito del Modello Standard. La peculiarità di questa ipotesi è semplice: a ogni particella bosonica, dotata cioè di spin intero, si associa una particella fermionica (o superpartner) dotata di spin semi-interi (in modo correlativo, ogni fermione ha un superpartner bosonico).Dobbiamo ammettere che sembra una tesi abbastanza esotica.  Perché abbiamo bisogno della supersimmetria?

Ecco tre buoni motivi: (i) consente di unificare le tre forze fondamentali della natura, una volta raggiunte le energie più elevate; (ii) prevede l’esistenza di particelle che potrebbero costituire la materia oscura; (iii) permette di risolvere il problema della differenza di intensità tra forza nucleare debole e forza gravitazionale – di 32 ordini di grandezza a favore della forza debole (ciò significa che è 100.000 miliardi di miliardi di miliardi più intensa). Tuttavia, benché il modello standard sia solidamente confermato dagli esperimenti, sul tappeto rimangono ancora molti problemi, in primis l’antimateria.

Che cosa ha causato l’asimmetria o, meglio, la rottura della simmetria che ha permesso alla materia barionica di dominare sull’antimateria? “Non lo sappiamo ancora, ma abbiamo scoperto il bosone di Higgs, una particella che non ha spin, che potrebbe decadere in particelle di materia oscura e che potrebbe aiutarci a capire perché non è stata l’antimateria a prendere il sopravvento”, spiega la Bortoletto. “Lo spin spiega il comportamento delle particelle. Gli elettroni hanno spin ½, mentre i fotoni che sono responsabili delle interazioni elettromagnetiche, hanno spin 1. Le particelle a spin ½ obbediscono al principio di esclusione di Pauli che vieta a due elettroni di occupare lo stesso stato quantico. L’Higgs è la prima particella spin 0, la prima particella scalare osservata, una particella che, tecnicamente, non è materia né forza”.

Proprio per questa sua natura ha certamente un ruolo importante nella spiegazione dell’inflazione cosmica, dell’energia del vuoto e, come è noto, nella spiegazione della massa delle altre particelle. “Ed è proprio a causa del bosone che l’elettrone ha massa e che gli atomi hanno potuto formarsi. Ma perché le particelle elementari hanno masse così diverse? Ora, grazie ai nuovi dati di LHC e ATLAS possiamo studiare meglio il decadimento del bosone e le interazioni tra bosoni e quarks”. Insomma, anche se il prossimo potenziamento di LHC sarà nel 2025, è ormai certo che in questi anni le novità non si faranno attendere.

Qui trovate la pagina della Prof.ssa Daniela Bortoletto – Department of Physics, Oxford.

Fonte: http://phys.org/news/2015-07-exploring-higgs-boson-dark-side.html

Annunci

LHCb osserva i pentaquark

Nel comunicato stampa del 14 luglio di LHC Italia si legge che LHCb, uno dei quattro grandi esperimenti del Large Hadron Collider del CERN, ha riportato la scoperta di una classe di particelle esotiche note come pentaquark. La collaborazione ha pubblicato sul sito open access arXiv.org lo studio che descrive questi risultati, sottomesso per la pubblicazione alla rivista Physical Review Letters.

“Il pentaquark non è una qualsiasi nuova particella,” precisa a Phys.org il rappresentante del team di LHCb Guy Wilkinson. “Esso rappresenta un modo per aggregare i quarks, ossia i costituenti fondamentali dei protoni e neutroni ordinari, in uno schema che non è mai stata osservata prima d’ora in oltre 50 anni di ricerche sperimentali. Studiare le sue proprietà ci può permettere di comprendere come la materia ordinaria, i protoni ed i neutroni con cui siamo formati, è costituita”.

I ricercatori di LHCb hanno cercato stati di pentaquark esaminando il decadimento di un barione, conosciuto come Λb (Lambda b), in altre tre particelle: una J/ψ (J-psi), un protone e un kaone carico. Lo studio della distribuzione dell’energia della J/ψ e del protone ha rivelato che stati di aggregazione di materia intermedi, i pentaquark appunto, si formano a volte nel corso del decadimento di questi barioni.

“Approfittando della grande mole di dati forniti da LHC, e potendo contare sull’eccellente precisione del nostro rivelatore, abbiamo esaminato tutte le possibilità per questi segnali, e abbiamo concluso che si può spiegare solo con stati di pentaquark”, spiega il fisico della collaborazione internazionale LHCb Tomasz Skwarnicki, della Syracuse University negli Stati Uniti, che ha coordinato lo studio. “Più precisamente gli stati devono essere formati da due quark up, un quark down, un quark charm e un anti-quark charm”, conclude Skwarnicki.

CERN’s LHCb experiment reports observation of exotic pentaquark particles

L’immagine mostra una delle possibili configurazioni per i pentaquark. Come mostra l’immagine in apertura, essi potrebbero essere strutturati come un’unica particella composta da quattro quark e un antiquark, oppure da un mesone e un barione (tre quark) legati debolmente. Credit: Daniel Dominguez.

“L’esistenza di particelle esotiche, quelle che non riusciamo a inquadrare nei modelli che descrivono mesoni e barioni, è ormai un fatto sperimentalmente accertato: ad esempio, stati con quattro quark sono già stati scoperti in diversi esperimenti, incluso LHCb”, approfondisce Pierluigi Campana, a capo della collaborazione internazionale LHCb dal 2011 al 2014. “Però adesso abbiamo una forte indicazione di qualcosa di equivalente per i cinque quark. E questo grazie alla capacità di LHCb di riconoscere la natura delle particelle, in mezzo a quella tempesta di tracce che ci è generosamente offerta dalle collisioni a LHC”, conclude Campana.

Ma questo risultato non è conclusivo, perché i pentaquark sono una classe di particelle che ci può aprire le porte a una comprensione molto più approfondita della materia. Infatti, se noi conosciamo bene la forza elettromagnetica che tiene legati assieme gli atomi, cioè i nucleoni e gli elettroni, non altrettanto possiamo dire della forza forte, che tiene legati sia i protoni e i neutroni all’interno del nucleo, sia i quark che li compongono tra di loro.

A four-by-four table of particles. Columns are three generations of matter (fermions) and one of forces (bosons). In the first three columns, two rows contain quarks and two leptons. The top two rows' columns contain up (u) and down (d) quarks, charm (c) and strange (s) quarks, top (t) and bottom (b) quarks, and photon (γ) and gluon (g), respectively. The bottom two rows' columns contain electron neutrino (ν sub e) and electron (e), muon neutrino (ν sub μ) and muon (μ), and tau neutrino (ν sub τ) and tau (τ), and Z sup 0 and W sup ± weak force. Mass, charge, and spin are listed for each particle.

La suddivisione delle particelle nel Modello Standard. I sei tipi (o sapori) di quark sono colorati in violetto. Le colonne rappresentano le tre generazioni dei fermioni. Credit: wikipediaorg

La storia dei pentaquark comincia negli anni Sessanta del Novecento, precisamente nel 1964, quando Murray Gell-Mann ha proposto che una categoria di particelle, note come barioni, e che comprende protoni e neutroni, fossero composti di tre oggetti chiamati quark, e che un’altra categoria, i mesoni, fossero invece formati di coppie quark-antiquark (Gell-Mann fu insignito per questo lavoro del Premio Nobel per la fisica nel 1969). Ma la tavola periodica delle particelle elementari elaborata da Gell-Mann permette anche l’esistenza di altri stati di aggregati di quark, come il pentaquark appunto, composto da quattro quark e un antiquark. Fino ad ora, tuttavia, nonostante una ricerca serrata durata mezzo secolo e condotta da parte di molti esperimenti in tutto il mondo, non era mai stata portata nessuna prova conclusiva dell’esistenza del pentaquark.

Vediamo meglio cos’è un quark. Quando Gell-Mann e Yuval Ne’emen, in modo del tutto indipendente l’uno dall’altro, riunirono in gruppi le particelle sulla base delle loro proprietà, ottennero la eightfold way, la ottuplice via, indicata con SU(3) nel linguaggio formale. Dopo aver diviso in gruppi anche i barioni, nel 1964 Gell-Mann, che era alla ricerca del modo più semplice per rendere conto di tutti i barioni con un numero di particelle sub-barioniche fondamentali, propose il concetto di quark un approfondimento si trova sulla rivista asimmetrie a questo link.

I quark sono fermioni, i quali sono raggruppati in tre generazioni, ognuna composta da due leptoni e due quark (più le loro antiparticelle dette antiquark). In totale si originano in questo modo sei tipi o sapori di quark: la prima generazione è composta dai quark up edown; la seconda include il quark charme il quark strange; della terza fanno parte il quark top e il quark bottom.

Gell-Mann scelse il nome quark perché era giunto alla conclusione che per fare un barione bastava una combinazione di base di tre quark, e le diverse combinazioni dei quark erano sufficienti per costituire tutti i barioni fino ad allora noti, il che gli aveva richiamato alla mente un verso del Finnegan’s Wake di James Joyce: three quarks for Muster Mark.  

Paper: 

“Observation of J/ψp resonances consistent with pentaquark states in Λ0b→J/ψK−p decays.” arxiv.org/abs/1507.03414

Fonti:

http://phys.org/news/2015-07-cern-lhcb-exotic-pentaquark-particles.html

http://lhcitalia.infn.it/index.php/news/447-lhcb-osserva-i-pentaquark-particelle-esotiche-a-cinque-quark

La forma degli elettroni e le estensioni del Modello Standard

Nell’immagine vedete il diagramma di Feynman, “scolpito” sul pavimento della University of British Columbia, tra un elettrone e un positrone (che è antiparticella dell’elettrone). La linea ondulatoria rappresenta lo scambio di un fotone nell’interazione, l’asse orrizontale rappresenta lo spazio mentre quello verticale il tempo. Da notare che una delle particelle, il positrone, viene rappresentato come un elettrone che viaggia all’indietro nel tempo. (Photocredit: University of British Columbia).

Il clamore mediatico ci ha aiutati a conoscere il bosone di Higgs. Un po’ più d’elite è, invece, la padronanza della concettualità che fa da sfondo al bosone: campo di Higgs, simmetria, asimmetria e violazione CPT, antimateria, Modello Standard, etc.. Cerco di dirvi qualcosa in merito, accentuando soprattutto quelle nozioni che risultano legate ai più significativi progressi ottenuti nelle Università e nel centri di ricerca sparsi per il mondo. Continua a leggere